<table>
<thead>
<tr>
<th>Types</th>
<th>Causes</th>
<th>Gross</th>
<th>Features</th>
<th>Histological Appearance</th>
</tr>
</thead>
</table>
| Coagulative Necrosis | • Due to **Hypoxia/Ischemia** that doesn’t involve

 o Severe trauma

 o Toxins

 o Acute/chronic immune response

 • Virtually happens in all part of ischeamic organs other than Brain

 (it is Liquefactive necrosis) | Pale in color, later turn into red during inflammatory response takes part

 • Dry in cut surface | • Paler staining tissue

 • **Absence of nuclei (ghost cells)**

 • Tissue architecture is remained intact

 • **Inflammatory cells infiltrate** | ![Myocardial Infarction](image1.png) |
| Liquefactive Necrosis | • **Hypoxia/Ischemia** of the Brain tissues

 • **Fungal and bacterial infection** of the CNS | The tissue is grossly liquify | ![Brain Infarction](image2.png) |
| Gummatous Necrosis | • **Spirocheatal infection**

 o Long standing Tertiary Syphilis | Soft, non-cancerous growth

 • Necrotic center with Hyalinization | • Necrotic center same like Coagulative necrosis

 • **Hyaline deposition**

 • Numerous inflammatory cells infiltrates (**Giant cells**)

 • **Fibroblastic ring** surround the necrotic tissues | ![Syphilitic Gumma](image3.png) |
<table>
<thead>
<tr>
<th>Necrosis</th>
<th>Types</th>
<th>Causes</th>
<th>Features</th>
<th>Histological Appearance</th>
</tr>
</thead>
</table>
| Hemorrhagic Necrosis | • Blockage of the venous drainage of an organ or tissue
 ○ Testicular torsion | Gross
 • Gross hemorrhage
 • Reddish in color
 Microscopy
 • Numerous Erythrocytes sequestration
 • Engorgement of veins
 • Numerous Hemosiderin-laden Macrophages | Pulmonary Hemorrhage |
| Caseating Necrosis | • Most commonly due to Tuberculous infection
 • Can also be due to
 ○ Fungal infection
 ○ Spirocheatal infection | Gross
 • Chess like appearance
 • Whitish to yellowish in color
 • Soft and friable
 Microscopy
 • Loss of tissue architecture
 • Proteinaceous cellular debris
 • Amorphous necrotic center
 • Numerous inflammatory cells (Giant cells)
 • Fibroblastic rings surround the necrotic center | Pulmonary Tuberculosis |
| Fatty Necrosis | • Due to action of Lipases on Adipose tissues in
 ○ Acute pancreatitis
 ○ Breast tissue necrosis | Gross
 • White chalky deposits due to formation of soap
 Microscopy
 • Soap deposit (TG interact with calcium)
 • Numerous Touton Giant Cells | Juvenile Xanthogranuloma |
<table>
<thead>
<tr>
<th>Necrosis</th>
<th>Types</th>
<th>Causes</th>
<th>Features</th>
<th>Histological Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fibrinoid Necrosis</td>
<td>• Immune-mediated vascular damage</td>
<td>• Numerous Eosinophils infiltration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Infective endocarditis</td>
<td>• Amorphous, basic, proteinaceous material in the tissue matrix with a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Henoch-Schönlein purpura</td>
<td>staining pattern reminiscent of fibrin</td>
<td></td>
</tr>
</tbody>
</table>

Churg-Strauss Syndrome
<table>
<thead>
<tr>
<th>Infarct</th>
<th>White Infarct</th>
<th>Red Infarct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causes</td>
<td>• Arterial occlusion</td>
<td>• Venous occlusion</td>
</tr>
</tbody>
</table>
| **Features** | • Referred as white due to lack of Erythrocytes accumulation
 • **Pyramid shape necrosis**
 o Apex to occluded artery
 o Base at periphery
 • The area of necrosis is coagulative
 • Can become red infarct when reperfusion occurs | • Referred as red due to massive Erythrocytes accumulation
 • Consist numerous fibrin strands
 • **Irregular shape necrosis (often)** |
| **Organs Involved** | • Solid organs with no dual arterial blood supply such as
 o Heart
 o Spleen
 o Kidneys
 • This is because solid organ may limit the amount of hemorrhage that can seep into the area of ischemic necrosis from adjoining capillary beds | • Loose organs with dual circulation
 o Lungs
 o Kidneys
 o GIT
 o Brain
 • The loose tissue enables Erythrocytes to seep during injury and accumulate inside the tissue |
| **Gross Appearance** | ![Kidney Infarct](image1)
 ![Lungs Infarct](image2) | |